May 7, 2020

Precise test of quantum electrodynamics and determination of fundamental constants with HD + ions


  • 1.

    Karshenboim, S. G. (ed.) Precision Physics of Simple Atoms and Molecules (Springer-Verlag, 2008).

  • 2.

    Pachucki, K., Patkóš, V. & Yerokhin, V. A. Testing fundamental interactions on the helium atom. Phys. Rev. A 95, 062510 (2017).

  • 3.

    Leach, C. A. & Moss, R. E. Spectroscopy and quantum mechanics of the hydrogen molecular cation: a test of molecular quantum mechanics. Annu. Rev. Phys. Chem. 46, 55–82 (1995).

  • 4.

    Roth, B. et al. in Precision Physics of Simple Atoms and Molecules (ed. Karshenboim, S. G.) 205–232 (Springer-Verlag, 2008).

  • 5.

    Wing, W. H., Ruff, G. A., Lamb, W. E. & Spezeski, J. J. Observation of the infrared spectrum of the hydrogen molecular ion HD+. Phys. Rev. Lett. 36, 1488–1491 (1976).

  • 6.

    Arcuni, P. W., Fu, Z. W. & Lundeen, S. R. Energy difference between the (ν = 0, R = 1) and the (ν = 0, R = 3) states of ({{rm{H}}}_{2}^{+}), measured with interseries microwave spectroscopy of H2 Rydberg states. Phys. Rev. A 42, 6950–6953 (1990).

  • 7.

    Carrington, A., McNab, I. R., Montgomerie-Leach, C. A. & Kennedy, R. A. Vibration-rotation spectroscopy of the HD+ ion near the dissociation limit. Mol. Phys. 72, 735–762 (1991).

  • 8.

    Fu, Z. W., Hessels, E. A. & Lundeen, S. R. Determination of the hyperfine structure of ({{rm{H}}}_{2}^{+}) (ν = 0, R = 1) by microwave spectroscopy of high-L, n = 27 Rydberg states of H2. Phys. Rev. A 46, R5313–R5316 (1992).

  • 9.

    Critchley, A. D. J., Hughes, A. N. & McNab, I. R. Direct measurement of a pure rotation transition in ({{rm{H}}}_{2}^{+}). Phys. Rev. Lett. 86, 1725–1728 (2001).

  • 10.

    Osterwalder, A., Wüest, A., Merkt, F. & Jungen, C. High-resolution millimeter wave spectroscopy and multichannel quantum defect theory of the hyperfine structure in high Rydberg states of molecular hydrogen ({{rm{H}}}_{2}^{+}). J. Chem. Phys. 121, 11810–11838 (2004).

  • 11.

    Koelemeij, J. C. J., Roth, B., Wicht, A., Ernsting, I. & Schiller, S. Vibrational spectroscopy of HD+ with 2-ppb accuracy. Phys. Rev. Lett. 98, 173002 (2007).

  • 12.

    Bressel, U. et al. Manipulation of individual hyperfine states in cold trapped molecular ions and application to HD+ frequency metrology. Phys. Rev. Lett. 108, 183003 (2012).

  • 13.

    Haase, C., Beyer, M., Jungen, C. & Merkt, F. The fundamental rotational interval of para-({{rm{H}}}_{2}^{+}) by MQDT-assisted Rydberg spectroscopy of H2. J. Chem. Phys. 142, 064310 (2015).

  • 14.

    Biesheuvel, J. et al. Probing QED and fundamental constants through laser spectroscopy of vibrational transitions in HD+. Nat. Commun. 7, 10385 (2016).

  • 15.

    Korobov, V. I., Hilico, L. & Karr, J.-P. Fundamental transitions and ionization energies of the hydrogen molecular ions with few ppt uncertainty. Phys. Rev. Lett. 118, 233001 (2017).

  • 16.

    Alighanbari, S., Hansen, M. G., Korobov, V. I. & Schiller, S. Rotational spectroscopy of cold and trapped molecular ions in the Lamb–Dicke regime. Nat. Phys. 14, 555–559 (2018).

  • 17.

    Jefferts, K. B. Hyperfine structure in the molecular ion ({{rm{H}}}_{2}^{+}). Phys. Rev. Lett. 23, 1476–1478 (1969).

  • 18.

    Schiller, S. & Korobov, V. I. Test of time-dependence of the electron and nuclear masses with ultracold molecules. Phys. Rev. A 71, 032505 (2005).

  • 19.

    Bakalov, D. & Schiller, S. The electric quadrupole moment of molecular hydrogen ions and their potential for a molecular ion clock. Appl. Phys. B 114, 213–230 (2014); erratum 116, 777–778 (2014).

  • 20.

    Karr, J.-Ph. ({{rm{H}}}_{2}^{+}) and HD+: candidates for a molecular clock. J. Mol. Spectrosc. 300, 37–43 (2014).

  • 21.

    Schiller, S., Bakalov, D. & Korobov, V. I. Simplest molecules as candidates for precise optical clocks. Phys. Rev. Lett. 113, 023004 (2014).

  • 22.

    Beyer, A. et al. The Rydberg constant and proton size from atomic hydrogen. Science 358, 79–85 (2017).

  • 23.

    Fleurbaey, H. et al. New measurement of the 1S−3S transition frequency of hydrogen: contribution to the proton charge radius puzzle. Phys. Rev. Lett. 120, 183001 (2018).

  • 24.

    Bezginov, N. et al. A measurement of the atomic hydrogen Lamb shift and the proton charge radius. Science 365, 1007–1012 (2019).

  • 25.

    Antognini, A. et al. Proton structure from the measurement of 2S–2P transition frequencies of muonic hydrogen. Science 339, 417–420 (2013).

  • 26.

    Grémaud, B., Delande, D. & Billy, N. Highly accurate calculation of the energy levels of the ({{rm{H}}}_{2}^{+}) molecular ion. J. Phys. B 31, 383 (1998).

  • 27.

    Moss, R. E. Energies of low-lying vibration-rotation levels of ({{rm{H}}}_{2}^{+}) and its isotopomers. J. Phys. B 32, L89–L91 (1999).

  • 28.

    Taylor, J. M., Yan, Z.-C., Dalgarno, A. & Babb, J. F. Variational calculations on the hydrogen molecular ion. Mol. Phys. 97, 25–33 (1999).

  • 29.

    Tiesinga, E., Mohr, P. J., Newell, D. B. & Taylor, B. N. Values of fundamental physical constants. NIST https://physics.nist.gov/cuu/Constants/index.html (2019).

  • 30.

    Wolf, F. et al. Non-destructive state detection for quantum logic spectroscopy of molecular ions. Nature 530, 457–460 (2016).

  • 31.

    Chou, C. et al. Preparation and coherent manipulation of pure quantum states of a single molecular ion. Nature 545, 203–207 (2017).

  • 32.

    Schneider, T., Roth, B., Duncker, H., Ernsting, I. & Schiller, S. All-optical preparation of molecular ions in the rovibrational ground state. Nat. Phys. 6, 275–278 (2010).

  • 33.

    Roth, B., Blythe, P., Wenz, H., Daerr, H. & Schiller, S. Ion-neutral chemical reactions between ultracold localized ions and neutral molecules with single-particle resolution. Phys. Rev. A 73, 042712 (2006).

  • 34.

    Schiller, S., Roth, B., Lewen, F., Ricken, O. & Wiedner, M. Ultra-narrow-linewidth continuous-wave THz sources based on multiplier chains. Appl. Phys. B 95, 55–61 (2009).

  • 35.

    Bakalov, D., Korobov, V. I. & Schiller, S. High-precision calculation of the hyperfine structure of the HD+ ion. Phys. Rev. Lett. 97, 243001 (2006).

  • 36.

    Schiller, S. & Korobov, V. I. Canceling spin-dependent contributions and systematic shifts in precision spectroscopy of molecular hydrogen ions. Phys. Rev. A 98, 022511 (2018).

  • 37.

    Bakalov, D., Korobov, V. I. & Schiller, S. Magnetic field effects in the transitions of the HD+ molecular ion and precision spectroscopy. J. Phys. B 44, 025003 (2011); corrigendum 45, 049501 (2012).

  • 38.

    Korobov, V. I., Koelemeij, J. C. J., Hilico, L. & Karr, J.-P. Theoretical hyperfine structure of the molecular hydrogen ion at the 1 ppm level. Phys. Rev. Lett. 116, 053003 (2016).

  • 39.

    Menasian, S. C. & Dehmelt, H. G. High-resolution study of (1,1/2,1/2)−(1,1/2,3/2) HFS transition in ({{rm{H}}}_{2}^{+}). Bull. Am. Phys. Soc. 18, 408 (1973).

  • 40.

    Heiße, F. et al. High-precision mass spectrometer for light ions. Phys. Rev. A 100, 022518 (2019).

  • 41.

    Fink, D. J. & Myers, E. G. Deuteron-to-proton mass ratio from the cyclotron frequency ratio of ({{rm{H}}}_{2}^{+}) to D+ with ({{rm{H}}}_{2}^{+}) in a resolved vibrational state. Phys. Rev. Lett. 124, 013001 (2020).

  • 42.

    Sturm, S. et al. High-precision measurement of the atomic mass of the electron. Nature 506, 467–470 (2014).

  • 43.

    Pastor, P. C. et al. Absolute frequency measurements of the 23S
    1 → 23P
    0,1,2 atomic helium transitions around 1083 nm. Phys. Rev. Lett. 92, 023001 (2004).

  • 44.

    Hori, M. et al. Buffer-gas cooling of antiprotonic helium to 1.5 to 1.7 K, and antiproton-to-electron mass ratio. Science 354, 610–614 (2016).

  • 45.

    Rengelink, R. J. et al. Precision spectroscopy of helium in a magic wavelength optical dipole trap. Nat. Phys. 14, 1132–1137 (2018).

  • 46.

    Hori, M. et al. Two-photon laser spectroscopy of antiprotonic helium and the antiproton-to-electron mass ratio. Nature 475, 484–488 (2011).

  • 47.

    Udem, T. Quantum electrodynamics and the proton size. Nat. Phys. 14, 632–632 (2018); correction 14, 767 (2018).

  • 48.

    Schiller, S., Bakalov, D., Bekbaev, A. K. & Korobov, V. I. Static and dynamic polarizability and the Stark and blackbody-radiation frequency shifts of the molecular hydrogen ions ({{rm{H}}}_{2}^{+}), HD+, and ({{rm{D}}}_{2}^{+}). Phys. Rev. A 89, 052521 (2014).

  • 49.

    Berkeland, D. J., Miller, J. D., Bergquist, J. C., Itano, W. M. & Wineland, D. J. Minimization of ion micromotion in Paul trap. J. Appl. Phys. 83, 5025–5033 (1998).

  • 50.

    Shen, J., Borodin, A. & Schiller, S. A simple method for characterization of the magnetic field in an ion trap using Be+ ions. Eur. Phys. J. D 68, 359 (2014).

  • 51.

    Bakalov, D. & Schiller, S. The electric quadrupole moment of molecular hydrogen ions and their potential for a molecular ion clock. Appl. Phys. B 114, 213–230 (2014); corrigendum 116, 777–778 (2014).

  • 52.

    Salumbides, E. J., Ubachs, W. & Korobov, V. I. Bounds on fifth forces at the sub-Å length scale. J. Mol. Spectrosc. 300, 65–69 (2014).

  • 53.

    Pavanello, M., Tung, W.-C. & Adamowicz, L. Determination of deuteron quadrupole moment from calculations of the electric field gradient in D2 and HD. Phys. Rev. A 81, 042526 (2010).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    %d bloggers like this: